A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement–Förster-Type Resonance Energy Transfer (PIFE-FRET)
نویسندگان
چکیده
Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.
منابع مشابه
Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In...
متن کاملSingle-Molecule Imaging With One Color Fluorescence.
Single-molecule fluorescence imaging is a powerful tool that enables real-time observation of DNA-protein or RNA-protein interactions with a nanometer precision. Here, we provide a detailed procedure for a previously developed single-molecule fluorescence method, termed "single-molecule protein-induced fluorescence enhancement" (smPIFE). While smFRET (Förster resonance energy transfer) requires...
متن کاملProtein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions.
Single molecule studies of protein-nucleic acid interactions shed light on molecular mechanisms and kinetics involved in protein binding, translocation, and unwinding of DNA and RNA substrates. In this review, we provide an overview of a single molecule fluorescence method, termed "protein induced fluorescence enhancement" (PIFE). Unlike FRET where two dyes are required, PIFE employs a single d...
متن کاملModification of Förster Resonance Energy Transfer Efficiency at Interfaces
We present a theoretical study on the impact of an interface on the FRET efficiency of a surface-bound acceptor-donor system. The FRET efficiency can be modified by two effects. Firstly, the donor's electromagnetic field at the acceptor's position is changed due to the partial reflection of the donor's field. Secondly, both the donor's and the acceptor's quantum yield of fluorescence can be cha...
متن کاملRevolutionizing the FRET-Based Light Emission in Core-Shell Nanostructures via Comprehensive Activity of Surface Plasmons
We demonstrate the surface-plasmon-induced enhancement of Förster resonance energy transfer (FRET)using a model multilayer core-shell nanostructure consisting of an Au core and surrounding FRET pairs, i.e., CdSe quantum dot donors and S101 dye acceptors. The multilayer configuration was demonstrated to exhibit synergistic effects of surface plasmon energy transfer from the metal to the CdSe and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 120 شماره
صفحات -
تاریخ انتشار 2016